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Eine neue Strategie zur Synthese endohedraler
Metallocenophane**
Gerald Scholz, Rolf Gleiter* und Frank Rominger

Professor Edgar Heilbronner zum 80. Geburtstag gewidmet

Cyclophane sind in der Lage, in vielfältiger Weise als
Komplexliganden zu dienen. Dabei können sie Metalle wie in
A und B gezeigt einschlieûen. Solche endohedralen Metallo-
cenophane sind für cyclische 6p-Systeme mit Übergangs-
metallen oder Hauptgruppenelementen bekannt. Für den
Aufbau endohedraler Metallocenophane[1] wurden bislang
zwei Synthesewege beschrieben: einerseits die Reaktion eines
Cyclophans mit Metallen oder Metallsalzen, andererseits der
stufenweise Aufbau der Brücken an einem Metallocen. So

gelang die Synthese verbrückter Titanocene, Zirconocene
(m� 4) und Ferrocene (m� 2) [Gl. (1)] [2, 3] sowie die
Herstellung von Chromocenderivaten (n� 2, 3) [Gl. (2)][4]

und Komplexen zwischen Metallen der Gruppen III und IV
und Cyclophanen[1, 5] auf erstgenanntem Wege. Die zweite
Synthesemöglichkeit ist in Gleichung (3) gezeigt. Hier wer-
den die Henkel am Metallocen stufenweise aufgebaut.[1, 6]

Unser neuer Zugang zu endohedralen Metallocenophanen
macht sich die intramolekulare metallkatalysierte Oligome-
risierung von Alkinen, die an einen p-Liganden geknüpft sind,
zunutze (Schema 1). Dieses Konzept sollte sich zur Bildung

Schema 1. Allgemeine Synthesemethode für endohedrale Metalloceno-
phane durch Templatreaktion.
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von Cyclobutadienen, Cyclopentadienonen und Benzolringen
eignen. Wir berichten im Folgenden erstmals über die Syn-
these von endohedralen Cobaltacyclophanen mit Cyclopen-
tadienyl- und Cyclobutadienringen als p-Einheiten (Schema 2
und 3).

Die Schlüsselverbindungen unserer Synthese sind die
disubstituierten Dicarbonyl(h5-cyclopentadienyl)cobalt-Kom-
plexe 5 a ± c, bei denen zwei Dreifachbindungen über Me-
thylenbrücken an die Cyclopentadienyleinheit geknüpft sind
(Schema 2). Zur Synthese der Liganden 4 a ± c setzten wir

Schema 2. Synthese von 5. n� 3 (a), 4 (b), 5 (c).

3-Ethoxycyclopent-2-en-1-on 2[7] mit Grignard-Reagentien[8]

aus den w-Halogenalkinen 1 a ± c[9] und Magnesium um.
Dabei erhielten wir im ersten Schritt die Cyclopentenone
3 a ± c, die sich in einer zweiten Grignard-Reaktion zu den
Cyclopentadienen 4 a ± c umsetzen lieûen. Dieser stufenweise
Aufbau ermöglicht die Synthese von Cyclopentadienen mit
Ketten unterschiedlicher Länge. Die Gesamtausbeute über
beide Schritte betrug 25 %. Zur Synthese der Metallocene
5 a ± c nutzten wir eine von Rausch et al.[10] entwickelte
Methode. Dabei setzten wir das Lithiumsalz von 4 mit einer
äquimolaren Mischung aus [Co2(CO)8] und I2 um. Die
Ausbeuten betrugen 60 ± 65 %.[11]

Der Aufbau des zweiten p-Liganden erfolgte durch Erhit-
zen von 5 a ± c in siedendem Cyclooctan (Schema 3). Die
Reaktion der Komplexe 5 a und 5 b lieferte 6 a und 6 b in 35
bzw. 39 % Ausbeute. Unter gleichen Reaktionsbedingungen
gab 5 c eine 1:1-Mischung aus 6 c und 7[11] in 10 % Ausbeute.
Wir führen dieses Ergebnis auf die längeren Methylen-
brücken zurück, die die Bildung zweier verschiedener Metal-
lacyclen als Intermediate ermöglichen.

Die Zusammensetzung der Mischung 6 c/7 wurde NMR-
spektroskopisch ermittelt. Im 1H-NMR-Spektrum erkennt

Schema 3. Thermolyse von 5. n� 3 (a), 4 (b), 5 (c).

man für die Protonen am Cyclopentadienylring drei Signale[11]

im Verhältnis 1:4:1. Bei höherem Feld findet man für die tert-
Butylgruppen drei Signale[11] im Verhältnis 1:1:2. Aus diesen
Befunden schlieûen wir, dass ein Gemisch aus 6 c und 7 im
Verhältnis 1:1 vorliegt. Diese Tatsache wird auch durch das
13C-NMR-Spektrum des Gemisches gestützt. Von 6 a und 6 b
konnten Einkristalle, die für eine Röntgenstrukturanalyse[12]

geeignet waren, gewonnen werden. Die Molekülstruktur von
6 a im Kristall ist in Abbildung 1 gezeigt. Die Ebenen der

Abbildung 1. ORTEP-Darstellung von 6 a im Kristall (Schwingungsellip-
soide für 50% Aufenthaltswahrscheinlichkeit). Die Wasserstoffatome
wurden aus Gründen der Übersichtlichkeit weggelassen. Ausgewählte
Abstände [�]: C1-C2 1.441(3), C1-C5 1.424(3), C2-C3 1.443(3), C3-C4
1.420(3), C4-C5 1.420(3), C12-C13 1.482(2), C12-C15 1.463(3), C13-C14
1.476(3), C14-C15 1.469(2), Cpz-Co 1.604(2), Co-Cbdz 1.645(2).

beiden p-Liganden sind nicht parallel, sondern weisen einen
Winkel von 68 zueinander auf. Die Atome C7 und C10 der
Propanobrücken sind aus der C1-C6-C8-C12- bzw. C3-C6-
C11-C14-Ebene (Abbildung 1) herausgedreht, um ekliptische
Konformationen zu umgehen. Die Abstände zwischen dem
Zentrum des Cp-Ringes (Cpz) und dem Co-Atom (1.604 �)
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und dem Zentrum des Cyclobutadien(Cbd)-Ringes (Cbdz)
und dem Co-Atom (1.645 �) sind etwas kleiner als die des
unverhenkelten Analogons (Cpz-Co 1.660 �, Co-Cbdz

1.681 �).[13] Bei 6 b, in dem die beiden p-Liganden durch
Tetramethylenbrücken verknüpft sind, sind die Abstände
zwischen Co und den Zentren der p-Liganden gröûer als bei
6 a (6 b : Cpz-Co 1.670 �, Cbdz-Co 1.692 �) und ähnlich denen
im unverhenkelten System.[13]

Die hier vorgestellte neuartige Strategie zur Synthese
endohedraler Metallocene hat mehrere Vorzüge: Sie ist nicht
auf stabile Cyclophane als Edukte beschränkt. Die Länge der
Brücken und das Substitutionsmuster am ersten p-Liganden
sind variabel.

Eingegangen am 9. Februar 2001 [Z 16591]
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